Indian Statistical Institute, Bangalore Centre B.Math. (II Year) : 2009-2010 Semester II : Semestral Examination Optimization

30.04.2010 Time: 3 hours. Maximum Marks : 100

Note: The paper carries 105 marks. Any score above 100 will be taken as 100.

1. [8 + 15 marks] (i) Let $F_1 \subset \mathbb{R}^k, F_2 \subset \mathbb{R}^p$ be convex sets. Suppose $H : \mathbb{R}^k \to \mathbb{R}^p$ is a linear transformation such that H establishes a 1 - 1 correspondence between F_1 and F_2 . Show that there is a 1 - 1 correspondence between the extreme points of F_1 and F_2 .

(ii) Let $m \leq n$. Consider the LP: Minimize $c^T x$ subject to $Ax \leq b, x \geq 0$, where A is an $(m \times n)$ real matrix of rank $m, b \in \mathbb{R}^m, c \in \mathbb{R}^n$. Let F be the feasible set for the LP. Let \tilde{F} denote the feasible set for the equivalent LPS. Show that there is a 1-1 correspondence between the extreme points of these two problems.

2. [15 marks] Consider the LP: Minimize $(-2x_1 - x_2)$ subject to $x_1 + x_2 \leq 3$, $2x_1 + x_2 \leq 5$, $x_1 \geq 0$, $x_2 \geq 0$. Convert this into standard form, and solve it using the simplex method.

3. [14 + 3 marks] (i) Maximize

$$f(x) = \exp\{-\frac{1}{2}(x-\mu)^T Q(x-\mu)\}, \ x \in \mathbb{R}^n,$$

where $\mu \in \mathbb{R}^n$ and Q is an $(n \times n)$ real symmetric strictly positive definite matrix. Give proper justification for each step.

(ii) In (i) above, what is the minimum value of $f(\cdot)$? Is it attained?

4. [10 + 10 marks] (i) Using the method of Lagrange multipliers, and justifying its use, maximize $(x^2 - y^2)$ subject to the equality constraint $(x^2 + y^2) = 1$. Is the global maximum point unique?

(ii) Consider the constrained optimization problem: Maximize $(x^2 - y^2)$ subject to (x + y) = 1. Will it be fruitful to apply the method of Lagrange multipliers? Why?

5. [12 + 18 marks] Consider the constrained optimization problem: Maximize $[(x + 1)^2 + (y + 1)^2]$ subject to $x^2 + y^2 \le 2$, $y \le 1$.

(i) Justify why the Kuhn-Tucker method will work in this case.

(ii) Solve the problem using the Kuhn-Tucker method.